翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Essential supremum : ウィキペディア英語版
Essential supremum and essential infimum
In mathematics, the concepts of essential supremum and essential infimum are related to the notions of supremum and infimum, but adapted to measure theory and functional analysis, where one often deals with statements that are not valid for ''all'' elements in a set, but rather ''almost everywhere'', i.e., except on a set of measure zero.
==Definition==

Let ''f'' : ''X'' → R be a real valued function defined on a set ''X''. A real number ''a'' is called an ''upper bound'' for ''f'' if ''f''(''x'') ≤ ''a'' for all ''x'' in ''X'', i.e., if the set
:f^(a, \infty) = \
is empty. Let
: U_f = \(a, \infty) = \emptyset\} \,
be the set of upper bounds of ''f''. Then the supremum of ''f'' is defined by

: \sup f=\inf U_f \,
if the set of upper bounds U_f is nonempty, and  sup ''f'' = +∞ otherwise.
Now assume in addition that (''X'', Σ, ''μ'') is a measure space and, for simplicity, assume that the function ''f'' is measurable. A number ''a'' is called an ''essential upper bound'' of ''f'' if the measurable set ''f''−1(''a'', ∞) is a set of measure zero, i.e., if ''f''(''x'') ≤ ''a'' for ''almost all'' ''x'' in ''X''. Let
:U^: \mu(f^(a, \infty)) = 0\}\,

be the set of essential upper bounds. Then the essential supremum is defined similarly as
: \mathrm \sup f=\inf U^}_f \ne \emptyset, and ess sup ''f'' = +∞ otherwise.
Exactly in the same way one defines the essential infimum as the supremum of the ''essential lower bounds'', that is,
: \mathrm \inf f=\sup \) = 0\}\,
if the set of essential lower bounds is nonempty, and as −∞ otherwise.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Essential supremum and essential infimum」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.